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Stationary statistical size distribution of nematic droplets in the
course of the isotropic liquid–nematic phase transition
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The statistical size distribution of nematic droplets in the course of the phase transition
isotropic liquid–nematic has been analysed using polarizing optical microscopy and described
by the model of reversible aggregation. The materials under investigation are low molecular
mass nematics, polymeric nematics and polymer dispersed liquid crystals observed at their
clearing temperatures in the stationary time regime.

1. Introduction To � ll this gap, the model of reversible aggregation
proposed by Kilian et al. [6, 7] has been adopted andIn isotropic liquids, the nematic phase is known to

appear at the clearing point in the form of spherical applied to a description of the stationary size distribution
of nematic droplets. The universality of the modeldroplets [1]. The temperature interval of the biphasic

region varies from 1° to 2° for low molecular mass had already been put in evidence by its application to
statistical ensembles of carbon-black particles [7], com-nematics to some tens of degrees for liquid crystal (LC)

polymers. Polymer dispersed liquid crystals (PDLCs) partments in poly(methylmethacrylate) [6, 7], micro-
domains at the surface of polyamic acids in the coursepresent a special kind of LC system. They are important

materials especially for optical applications [2, 3]. In of their transformation into polyimides [8], defects at
the surface of loaded metals [7], and bacteria and yeastthese systems, the phase separation occurs in the course

of polymerization of a mixture consisting of a monomer in the course of their growth [7]. This has given us
hope of describing successfully the stationary size distri-and a nematic LC. PDLC � lms consist usually of nematic

LCs dispersed in the form of micron-sized droplets within bution of nematic droplets in the course of either, phase
transition in low molecular mass nematics and nematica solid polymer matrix.

The morphology of LC droplets including their size, polymers, or phase separation in PDLC formation, using
the model of reversible aggregation.shape, spatial distribution and number density is known

strongly to in� uence the electro-optical properties of LC
2. Experimental� lms [2, 3]. The phase-ordering kinetics of the growth

The materials under investigation were:of an ordered LC phase originating from a disordered
isotropic melt has already been carefully investigated (1 ) the low molecular mass nematic 4-n-decyloxy-
by Dierking [4, 5] under isothermal conditions after

cinnamic acid, observed at 166°C (about 0.1°
a temperature quench. The growth of the LC droplet

lower than its isotropisation temperature) [1];
diameter L , with time t, was reported to follow a

(2 ) the nematic polymer, poly-1,9-trimethylene-4 ,4,6,6-
universal growth law L (t )# tn, where n varies from 0.5

tetramethyl-4,6-disila-5-oxanonamethylene tereph-
to 1. Yet the momentary experimental statistical size

thaloylamide (polysiloxaneterephth aloylamide) ,
distribution of nematic droplets at the phase transition/

observed at 260°C (about 10° lower than its
separation has not been investigated and its analytical

isotropization temperature) [9];
description is still not known.

(3 ) an ultraviolet polymerized blend of a commercial
LC mixture (50 : 50) E7 (Merck Ltd, Poole, UK)
and 2-ethylhexyl acrylate, observed at 21°C [10].*Author for correspondence; e-mail: zuev@hq.macro.ru
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1280 V. Zuev and S. Bronnikov

For observation of the textural patterns investigated,
samples were placed in the gap (approximately 3–6 l m)
between two glass plates. The nematic droplets were
identi� ed in the polarized light photographs at ×100
magni� cation; their shape was nearly spherical. The
diameters of droplets were measured visually with an
error 45%; the number of droplets under analysis
varied from 200 to 800 in each photograph.

3. Model
According to the model of reversible aggregation

[6, 7], stationary microstructures with a disordered
internal structure should be built up by linkage of
identical units in metastable clusters called aggregates.
In the liquid state they are linked in a percolation
pattern with a de� nite life time (this is a condition of
their reversibility). The con� guration of the aggregate
ensembles permanently � uctuates and a momentary
photograph (‘quasi-frozen’ state) demonstrates only one
of many possible con� gurations. Collective structural
� uctuations within the ensemble are the mechanism for
optimization of the properties of the stationary ensembles.
The stationary size distribution in an aggregate is
assumed to be easily achieved (within some seconds).
The condition for optimization of the properties is given
by the production of the maximum entropy.

In the model, the statistical size distribution n ( y) reads
as follows:

n(y)=n0yp- 1 exp ( - bU) (1)

where n0 is a normalizing factor, y is the size of the
units comprised, p is a parameter determined by extra-
components of the ensemble entropy (it seems to be
related to the dimension of space in which the aggregation
occurs [11]), b ª 1/kBT (kB is the Boltzmann constant,
T is the absolute temperature) and U is the aggregation
energy.

If p=0, the distribution coincides with the ‘entropy-
maximum’ distribution, i.e. the Boltzmann distribution.
With respect to the entropy, this distribution corre-
sponds to a gas-like behaviour [12]. The decisive role
of the entropy in optimizing the meta-stable structural
patterns of dissipative systems like the aggregate ensemble
is thus clearly indicated by this type of distribution.

In so far as the aggregation energy depends on the
size of the comprised units, the standard aggregation
energy, DU0=U/y, should be introduced. In the � nal

Figure. Statistical size distributionof the diameters of nematicform at p=3† equation (1) gives
droplets at the phase transition isotropic liquid–nematic

n(y)=n0y2 exp ( - byDU0 ). (2) for (a) 4-n-decyloxycinnamic acid at 166°C, (b) polysiloxane-
terephthaloylamide at 260°C and (c) a UV-polymerized
PDLC from a commercial LC mixture E7 with the†Essentially no crossover from three-dimensional to two-
monomer 2-EHA (composition 50 : 50) at 21°C.dimensional growth has been observed as the nucleus diameter

reaches the dimension of the experimental cell gap and the
growth of nucli saturates after about 1 min [4, 5].
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1281I–N transition: droplet size distribution

Table. Parameters of equations (3) and (4) for the systems investigated.

System T /°C n0 bDU0 /l m
- 1 DU0 /kJ mol

- 1 l m
- 1 y0 /l m áyñ/l m

1 166 0.080 0.14 0.51 12.0 33.4
2 260 0.035 0.24 1.06 3.0 15.5
3 21 0.073 0.40 0.98 3.5 10.5

Taking into consideration the minimum droplet diameter ensembles of nematic droplets are governed by thermal
� uctuations having the energy kT .y0 , obtained from experimental data, equation (2) yields

In so far as equation (4) describes the experimental
n(y - y0 )=n0 (y - y0 )2 exp[ - b(y - y0 )DU0]. (3) data quite fairly, the condition of optimization of the

properties of the nematic droplets in the ensemble is
ful� lled, i.e. the entropy of the system is maximized at

4. Results and discussion
the formation of the statistical ensemble [4].

Systems 1 and 2 (see § 2) have been investigated in
The table shows that the mean diameter of the droplets

the stationary time regime, maintaining them for about
in the polymer systems 2 and 3 is lower compared with

1 min after the temperature quench, whereas system 3 that for the low molecular mass nematic 1. Simultaneously
has been investigated just after complete droplet formation. the DU0 parameter (having been evaluated within a
The results of the statistical treatment of the photographs 10% error) for systems 2 and 3 is approximately double
under investigation are given in the � gure. The statistical that for low molecular mass system 1. Therefore one
distributions of the nematic droplet diameters for all may suppose that the creation of the droplet ensemble
the systems are evidently asymmetrical and could be is hindered in polymer systems (perhaps because of their
described by neither a Gaussian nor a log-normal distri- high viscosity) compared with a low molecular mass
bution. Results of computation using equation (3) are system.
presented in the � gure in the form of solid lines. The y0 ,
n0 and U0 parameters have been accepted as free and are References
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